

2066 Marking Scheme

Grade	Mark Required		° condidatos cobiovino onodo	
Awarded	(/ ₁₂₅)	%	% canalates achieving grade	
A	91+	73%	25.0%	
В	76+	61%	26.8%	
С	61+	49%	24.0%	
D	53+	42%	9.0%	
No award	<53	×42%	15.2%	

Section:	Multiple Choice		Extended Answer		Investigation	
Average Mark:	27.7	/40	33.1	/60	14.9	/25

2	2006 Adv Higher Chemistry Marking Scheme				
MC Qu	Correct Answer	% Correct	Reasoning		
1	D	77	図A No burning inside a sodium vapour lamp 図B No yellow filter inside a sodium vapour lamp 図C Energy is adsorbed as electrons move to higher energy levels (electron shells) 図D Energy is emitted as electrons move to lower energy levels (electron shells)		
2	В	59	 BF₄⁻: Boron has 3 outer electrons + 4 bonding electrons from 4xF + 1 electron from -ve charge. no of electrons = 3+4+1 = 8 electrons → 4 electron pairs (4 bonding pairs) ∴ <u>tetrahedral</u> BF₃: Boron has 3 outer electrons + 3 bonding electrons from 3xF no of electrons = 3 + 3 = 6 electrons → 3 electron pairs (3 bonding pairs) ∴ <u>trigonal planar</u> 		
3	Α	91	Aluminium oxide Al_2O_3 is amphoteric (reacts with acids and bases)		
4	В	89	 A This applies to conductors/metals and superconductors only B Semiconductors increases in conductivity as temperature increases C The Photovoltaic Effect: conductivity of semiconductors increases in the presence of light D More dopant atoms would increase the conductivity instead 		
5	A	59	 Image: A Only Cl atom has lone (non-bonding) pairs of electrons → 3 non-bonding pairs on Cl atom B Only O atom has lone (non-bonding) pairs of electrons → 2 non-bonding pairs on O atom C Only N atom has a lone (non-bonding) pair of electrons → 1 non-bonding pair on N atom D Only O atom has lone (non-bonding) pairs of electrons → 2 non-bonding pairs on O atom 		
6	D	67	lilac flame colour : potassium salt Reacts with water to form hydrogen ags and strong alkaline solution : salt contains hydride ion		
7	С	85	 A This is Heisenberg's Uncertainty Principle B This is the Aufbau principle C Electrons fill up orbitals singly with parallel spins before filling orbitals with 2 electrons D The energy of a bound electron is quantised. 		
8	В	82	n o. of mol of HNO ₃ = volume x concentration = 0.04litres x 2 mol l^{-1} = 0.08mol HNO ₃ 1 mole of HNO ₃ neutralises 1 mole of NH ₃ \therefore 0.08mol HNO ₃ neutralises 0.08mol of NH ₃ \therefore 0.02mol of salt contains 0.08mol of NH ₃ \therefore 4 mol of NH ₃ per mole of salt		
9	В	54	gfm AgCl = 107.9 + 35.5 = 143.4g \therefore 0.02 mol of salt contains 0.04mol of Cl ⁻ ions \therefore formula of salt must be XxCl ₂ \therefore		
10	A	65	 ☑ A Ba²⁺(Cl⁻)₂ contains 1 Ba²⁺ ion per formula unit ∴ 1mol of BaCl₂ contains 1mol of positive ions ☑ B BaCl₂ contains ions not molecules ☑ C BaCl₂ contains ions not atoms ☑ D Ba²⁺(Cl⁻)₂ contains 1 Ba²⁺ ion and 2 Cl⁻ ions per formula unit ∴ 3mol of ions in 1 mole of BaCl₂ f.u. 		
11	С	90	 ☑ A Increase in temp favours endothermic reaction ∴ reverse reaction is endothermic ☑ B Removal of a reactant (O₂) moves equilibrium to the LEFT ☑ C Increase in pressure favours pressure-reducing equation: Forward reaction 3vol → 2vol of gas ☑ D Catalysts do no alter the position of equilibrium 		
12	A	77	 ✓A Solubility of the solute X may vary differently in either solvent with temperature ☑ B Volume of water does not alter concentration of solute X ∴ more water means more solute X ☑ C Increased mass of solute X in water layer will mean more X going into upper layer ☑ D Increased mass of solute X will mean same % separation of X between layers 		
13	D	61	pH = pK _a - log <u>[acid]</u> = 4.76 - log <u>0.1</u> = 4.76 - log(0.5) = 4.76 - (-0.301) = 5.06		
14	D	55	■ A $[H^+] = 0.1$ mol $I^{-1} = 10^{-1}$ \therefore pH = $-\log_{10}[H^+] = -\log_{10}[10^{-1}] = -(-1) = 1$ ■ B Na OH present = 0.002mol and CH ₃ COOH present = 0.002mol \therefore complete neutralisation ■ C pH of strong acid is lower than pH of weak acid at same conc. due to increased H ⁺ dissociation. ■ D The lower the K ₀ value the weaker the acid (also higher the pK ₀ value the weaker the acid)		

15	С	48	weak acid v. weak alkali titrations do not give a sharp colour change to get an accurate end point						
16	С	55	Bonds broken: 1x H-H bond = +432kJ mol ⁻¹ (now +436kJ in current data booklet)Bonds formed: 1x H-Cl bond = -428 kJ mol ⁻¹ (now -432kJ in current data booklet)Enthalpy change = +432kJ mol ⁻¹ + (-428kJ mol ⁻¹) = +4kJ mol ⁻¹ (+436 + (-432) = +4kJ mol ⁻¹ too!)						
17	D	28	 ☑ A Enthalpy of Formation for CO only ☑ B Enthalpy of Formation for H₂O₂ only ☑ C Enthalpy of Formation for Na₂O but not enthalpy of Combustion of Na as 2 mol of Na burned. ☑ D Enthalpy of Formation for MgO and Enthalpy of Combustion for Mg. 						
18	A	75	1A Lattice enthalpy: gaseous ions turn into the ionic solid B Equation contains gaseous atoms turning into ionic solid not ions C Equation contains solids and diatomic molecules not gaseous ions D Equation contains solids not gaseous ions.						
19	В	66	■ A Cl-Cl bond must be broken before ionisation steps $[Cl_{2(g)} \rightarrow 2Cl_{(g)}]$ ■ B The electron affinity enthalpy for Cl $[Cl_{(g)} + e^- \rightarrow Cl^{(g)}]$ is required not 1 st Ionisation Energy ■ C 1 st Ionisation energy for Na is required $[Na_{(g)} \rightarrow Na^+_{(g)} + e^-]$ ■ D Enthalpy of formation for NaCl required $[Na_{(s)} + \frac{1}{2}Cl_{2(g)} \rightarrow NaCl_{(s)}]$						
20	A	79	A Decrease in entropy means decrease in disorder: 2 reactant gases react to form 1 product gas B Increase in entropy/disorder: number of particles double as reaction proceeds C Increase in entropy/disorder: Solid releases a gas as reaction proceeds D Increase in entropy/disorder: Solid reacts and all products are gases						
21	В	67	 A Position of equilibrium (to the right) is no indication of speed of the reaction B High value of equilibrium constant indicates feasibility of reaction C Equilibrium constant does not give any details of enthalpy change (exothermic/endothermic) D Equilibrium constant does not give any details of enthalpy change (exothermic/endothermic) 						
22	В	70	Upper equation of any pair of line is reversed and we want Ti + $O_2 \rightarrow TiO_2$ line to be reversed to produce Ti metal. Only Ma line is below Ti line at 1500K (H. Na & C. lines are above Ti line at 1500K).						
23	D	64	ZA Oxidation: Ni(s) → Ni ²⁺ (aq) + 2e ⁻ as nickel is higher up the electrochemical series ZB Ni ²⁺ ions are not changed in this cell ZC Ag atoms are not changed in this cell ZD Reduction: $2Aa^{+}(aq) + 2e^{-} \rightarrow 2Aa(c)$ as silver is below nickel in the electrochemical series						
24	A	71	<pre>(inetics of the rate determining (slow) step are key to answer 5low step: 1x NO and 1xCl₂ hence both reactants have 1st order kinetics ∴rate = [NO]¹[Cl₂]¹ = [NO][Cl₂]</pre>						
25	В	81	Order of Reaction for P: Compare experiments $1+3 \rightarrow 2x[P]$ does not change time \therefore zero order Order of Reaction for Q: Compare experiments $1+2 \rightarrow 2x[Q]$ halves time for reaction \therefore 1st order \therefore rate = $[P]^0[Q]^1 \therefore$ rate = $[Q]$						
26	С	85	Reaction 1: <u>substitution</u> reaction $C_3H_8 + Br_2 \rightarrow C_3H_7Br + H-Br (in the presence of light)Reaction 2: substitution reaction as -Br group is replaced by -OH groupReaction 3: dehydration reaction as water is removed and a C=C double bond is created.$						
27	В	60	The +ve cyclic ion intermediate is attracted to the Cl ⁻ or Br ⁻ ions present. It will react with either.						
28	A	79	Inside Bond C-H C-C C=C C=C Inside Molecule 4 x C-H bond 1 x C-C bond 1 x C=C bond 1 x C=C bond Total Sigma bonds 1 1 1 1 1 1 7 Pi Bonds 0 0 1 2 Pi Bonds 0 0 1 2 3						
29	С	78	 ☑ A no sp² hybridisation in alkanes (sp² hybridisation is found in alkenes) ☑ B no sp² hybridisation in alkanes (sp² hybridisation is found in alkenes) ☑ C only sigma (single) bonds in alkanes and only sp³ hybridisation in alkanes ☑ D no pi bonds in alkanes (pi bonds are found in C=C bonds and C=C bonds) 						
30	A	90	 A Termination Step: no free radicals in products to continue reaction. B Propagation Step: started by a free radical & a free radical is produced to continue the reaction C Propagation Step: started by a free radical & a free radical is produced to continue the reaction D Initiation Step: No free radicals in reactants but free radicals produced to continue reaction. 						
31	С	74	 A Ethers, like ethoxyethane, are carbon-based compounds which are very flammable B ethoxyethane CH₃CH₂OCH₂CH₃ and butan-1-ol CH₃CH₂CH₂CH₂OH are isomers (formula C₄H₁₀O) C butan-1-ol has a higher boiling point than ethoxyethane due to hydrogen bonding C CH₃CH₂O-Na⁺ + BrCH₂CH₃ → NaBr + CH₃CH₂OCH₂CH₃ (ethoxyethane) 						

32	В	73	Molecule must have two acid -COOH groups to produce polyester with ethane-1,2-diol					
33	В	65	 A ketones do not oxidise. B aldehydes are oxidised by Tollen's Reagent C Primary alcohols are <u>not</u> oxidised by Tollen's Reagent D Tertiary alcohols do not oxidise 					
34	С	46	 A CH₃CH₂OH is an alcohol and is neutral B C₆H₅OH (Phenol) is acidic as H⁺ ions dissociates from phenol molecule C CH₃CH₂NH₂ is a basic molecule as H⁺ ion forms dative covalent bond to form CH₃CH₂NH₃⁺ C C₆H₅NH₂ (Phenylamine) is not as basic as CH₃CH₂NH₂ as lone pair is withdrawn from N into delocalised electrons of the phenyl group 					
35	С	20	$C_{10}H_8 \text{ gains a maximum of 10 hydrogen atoms during hydrogenation}$ 1 mol of $C_{10}H_8 = (10\times12) + (8\times1) = 120 + 8 = 128g$ no. of mol = $\frac{\text{mass}}{\text{gfm}} = \frac{12.8}{128} = 0.1 \text{ mol}$ $C_{10}H_8 + 5H_2 \rightarrow C_{10}H_{18}: 1 \text{ mol of } C_{10}H_8 \text{ reacts with 5 mol of } H_2 \text{ to form 1 mol of } C_{10}H_{18}$ 1 mol 5mol $C_{10}H_8 - 5\text{mol}$					
36	D	78	 ▲ A no C=C double bond in compound ∴no geometric isomer ▲ B need two -Cl groups across a C=C double bond to become a geometric isomer ▲ C -Cl groups need to be different carbons not same carbon ▲ D this structure has 2 geometric isomers: traps-1 2-dichlorosthene and cis-1 2-dichlorosthene 					
37	A	68	2	Elements percentage of element Divide mass by RAM Divide through by smallest value	$ \begin{array}{r} C \\ 37.5\% \\ = \frac{37.5}{12} \\ = 3.125 \\ = \frac{3.125}{3.125} \\ = \frac{3.125}{3.125} \end{array} $	H 12.5% $= \frac{12.5}{1}$ $= 12.5$ $= \frac{12.5}{3.125}$	$ \begin{array}{r} O \\ 50.0\% \\ = \frac{50.0}{16} \\ = 3.125 \\ = \frac{3.125}{3.125} \\ \end{array} $	
38	D	72	= 1 = 4 = 1 Heaviest (m/z) peak (found on right hand side) gives formula mass of compound = 58 A Propane C3H8 has formula mass = 44 B Propan-1-ol CH3CH2CH2OH has a formula mass of 60 C Propan-2-ol CH3CH(OH)CH3 has a formula mass of 60 Image: C Propane CH3COCH2 has a formula mass of 60					
39	С	80	Infra-red Absorption Spectroscopy involves the bonds within molecules absorbing of the energy of the infra-red wavelength region to stretch the bonds. Where there are absorptions of certain IR wavelengths, the trace shows downward peaks where the TR has been absorbed					
40	A	90	Image: A constrained and the constrained of the constraine					

20	2006 Adv Higher Chemistry Marking Scheme						
Long Qu	Answer	Reasoning					
1a(i)	+178.3 kJ mol ⁻¹	$\Delta H^{\circ}_{reaction} = \Sigma \Delta H^{\circ}_{f} \text{ (products)} - \Sigma \Delta H^{\circ}_{f} \text{ (reactants)}$ = (-393.5 - 635.1) - (-1206.9) = +178.3kJ mol ⁻¹					
1a (ii)	+159 J K ⁻¹ mol ⁻¹	$\Delta S^{o}_{reaction} = \Sigma S^{o}_{f} (products) - \Sigma S^{o}_{f} (reactants)$ = (213.8 + 38.1) - (92.9) = +159 J K ⁻¹ mol ⁻¹					
1a(iii)	1121.4K	The reaction becomes thermodynamically feasible when $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} = 0$ $\therefore T\Delta S^{\circ} = \Delta H^{\circ} \therefore T = \frac{\Delta H^{\circ}}{\Delta S^{\circ}} = \frac{178.3 \times 1000 \text{ J mol}^{-1}}{159 \text{ J K}^{-1} \text{ mol}^{-1}} = 1121.4 \text{ K}$					
1b(i)	+5	(4 x Phosphorus Oxidation No) + (10 x Oxygen Oxidation No) = 0 (4 x Phosphorus Oxidation No) + (10 x -2) = 0 (4 x Phosphorus Oxidation No) = +20 ∴ Phosphorus Oxid ⁿ N° = ⁺²⁰ /4 = +5					
1b(ii)	Calcium phosphate	P4O10 is a non-metal oxide ∴ dissolves in water to form phosphoric acid H3PO4 Neutralisation of calcium oxide + phosphoric acid forms calcium phosphate + water					
2a	Colourless to purple	MnO4 ⁻ ions are purple. MnO4 ⁻ ions are titrated from burette into reaction. MnO4 ⁻ ions are immediately reacted away with oxalate ions are present. Once the oxalate ions are all been used up, MnO4 ⁻ ions will remain and change the colour in flask to purple.					
2b		• $C_2O_4^{2^-} \rightarrow 2CO_2 + 2e^-$ • MnO4 ⁻ + 8H ⁺ + 5e ⁻ → Mn ²⁺ + 4H ₂ O • ×5 5C_2O_4^{2^-} → 10CO_2 + 10e^- • ×2 2MnO4 ⁻ + 16H ⁺ + 10e ⁻ → 2Mn ²⁺ + 8H ₂ O • '+•' 2MnO4 ⁻ + 16H ⁺ + 5C_2O4 ²⁻ → 2Mn ²⁺ + 8H ₂ O + 10CO ₂					
2c	0.045 mol l ⁻¹	no. of mol of MnO4 ⁻ = volume × concentration = 0.0225litres × 0.025 mol l ⁻¹ = 0.00045 mol 2MnO4 ⁻ + 16H ⁺ + 5C ₂ O4 ²⁻ → 2Mn ²⁺ + 8H ₂ O + 10CO ₂ 2mol 5mol 0.00045mol. 0.001125mol concentration = no. of mol volume = 0.025 litres = 0.045 mol l ⁻¹					
3a	1s²2s²2p ⁶	Neon atoms have 10 electrons. (2+2+6=10) Neon is a Noble Gas has full orbitals (s holds 2 electrons and p holds 6 electrons)					
3b	of equal energy	Electrons in the same orbital are of equal energy as the orbital is at a fixed distance from the nucleus.					
3c	figure of 8 shape	2^{nd} (Angular Momentum) Quantum Number has value of l=0, 1, 2 or 3 for s, p, d and f respectively. l=1 is the p orbital. p_x , p_y and p_z orbitals all have a figure of 8 shape (∞).					
3d	n=3 l=0	n=3: sodium is the 1 st element in the next period as n=2 is now a full shell [=0: s-orbitals fill up first in the n=3 shell \rightarrow 1=0					
4a	241nm	$E = \frac{L \times h \times c}{\lambda} \therefore \lambda = \frac{L \times h \times c}{E} = \frac{6.02 \times 10^{23} \text{mol}^{-1} \times 6.63 \times 10^{-34} \text{ J s} \times 3 \times 10^8 \text{ m s}^{-1}}{497 \times 1000 \text{ J mol}^{-1}}$ $= 2.41 \times 10^{-7} \text{ m}$ $= 241 \text{ nm}$					
4 b(i)	-391kJ mol ⁻¹	Reaction $@x-1:$ $O_3 \rightarrow O + O_2$ $\Delta H= +106 \text{ kJ mol}^{-1}$ Reaction $@:$ $O + O \rightarrow O_2$ $\Delta H= -497 \text{ kJ mol}^{-1}$ Add $@'+@:$ $O + O_3 \rightarrow O_2 + O_2$ $\Delta H= -391 \text{ kJ mol}^{-1}$					
4b(ii)	* 0 × × * 0 × × * 0 × ×	This diagram or its mirror image is acceptable. All dots is also acceptable					

5α	$K_{a} = \frac{[H^{+}][HPO_{4}^{2^{-}}]}{[H_{2}PO_{4}^{-}]}$	$K_{\!a}$ equilibrium equation has concentrations of product(s) on top and concentrations of reactant(s) on bottom of equation				
5b	4.1	$pH = \frac{1}{2}pK_{a} - \frac{1}{2}log_{10}c$ = $(\frac{1}{2}x7.2) - \frac{1}{2}log_{10}(0.1)$ = 3.6 (-0.5) = 4.1				
5с	Accepts a H⁺ ion	An acid is any substance capable of donating a proton (H*) A base is any substance capable of accepting a proton (H*)				
6a	Hydrogen: ∆H= -143 kJ Petrol: ∆H= -44.7 kJ	$gfm H_2 = (2x1) = 2g$ $gfm C_8H_{18} = (8x12)+(18x1) = 96+18 = 114g$ $no. of mol = \frac{mass}{gfm} = \frac{1g}{2g mol^{-1}} = 0.5mol$ $no. of mol = \frac{mass}{gfm} = \frac{1g}{114g mol^{-1}} = 0.0088mol$ $1 mol = -286 kJ$ $1 mol = -5100 kJ$ $0.5mol = -286 x^{0.5}/_1 = -143kJ$ $0.5mol = -5100 x^{0.5}/_1 = -44.7 kJ$				
6b(i)	$O_{2(g)}+4H^{+}(aq)+4e^{-} \rightarrow 2H_{2}O(l)$	$O_2(g)$ + $4H^*(aq)$ + $4e^- \rightarrow 2H_2O(l)$ is found in the data booklet p12				
6b(ii)	0.03V	Oxidation: $CH_3OH + H_2O \rightarrow CO_2 + 6H^+ + 6e^- E^\circ = X$ Reduction: $O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$ $E^\circ = 1.23V$ Redox: $CH_3OH + 1\frac{1}{2}O_2 \rightarrow CO_2 + 2H_2O$ $F^\circ = 1.20V$				
		Oxidation E°: 1.20V = 1.23V + X \therefore X = 1.20V - 1.23V = -0.03V \therefore Reduction E°: +0.03V (NB multiplying Reduction equation by $1\frac{1}{2}$ does not change E°)				
6b(iii)	-694.8kJ mol ⁻¹	ΔG° = -nFE° = - 6 × 96500 × 1.20 = -694800 J mol ⁻¹ = -694.8 kJ mol ⁻¹				
7a	[propanone] and [H ⁺] are much higher than [I ₂]	Propanone and acid are in excess as it is iodine that is being investigated.				
7b	[I ₂]time	Concentration of Iodine decreases with time linearly i.e. zero order. I ₂ does not appear in the rate determining (slow) step. If reactant is zero order then the line is linear as changing the concentration of I ₂ does not change the reaction rate. If reaction rate is constant then the gradient of the line is constant which results in a straight line.				
7c	2 nd order	I ₂ is zero order (i.e x=0) CH ₃ COCH ₃ is 1 st order and H [*] is 1 st order \rightarrow Overall order = 0+1+1 = 2				
7d	mol ⁻¹ l <i>s</i> ⁻¹ or l mol ⁻¹ <i>s</i> ⁻¹	Rate = k [CH ₃ COCH ₃][H ⁺] k= $\frac{\text{rate}}{[CH_3COCH_3][H^+]} = \frac{\text{mol } ^{-1} s^{-1}}{\text{mol } ^{-1} \times \text{mol } ^{-1}} = \text{mol}^{-1} s^{-1}$				
8a	Any answer from:	(ortho)phosphoric acid aluminium oxide conc sulphuric acid				
8b	Cyclohexanol has hydrogen bonding	-OH bond in cyclohexanol leads to hydrogen bonding between molecules and elevates the boiling point. Cyclohexene is a non-polar hydrocarbon with no hydrogen bonding				
8c	NaCl is denser or helps separate mixture better	Cyclohexene is less soluble/insoluble in saturated NaCl solution than in water				
8d	Make derivative (1 mark) Test Melting point and compare value (1 mark)	Brady's Reagent (2,4-dinitrophenylhydrazine) makes a solid derivative with aldehydes and ketones. These solid derivatives have melting points which can be directly compared to theoretical values to reveal the identity of the original aldehyde/ketone.				
9a	Answer C	(CH ₃) ₂ (C ₂ H ₅)COH has 3 carbons attached to the carbon with the -OH group				
9b	H HO'''' CH ₃ (CH ₃) ₂ CH	There are many ways to draw this shape but it is safest to draw the mirror image of the original diagram. If the diagram is not a direct mirror image then two corners should be the same arrangement and the other two corners should be swapped positions.				

9с	Either from:				
		HOH_2C^2 Cris H_3C CrizOri C ₂ H ₅ H_5C_2 or similar			
10a	propan-1-ol has the shortest carbon chain	Hydrocarbon part of the molecule is hydrophobic. Hydroxyl (-OH) part of the molecule is hydrophilic and forms hydrogen bonds with water. The larger the hydrocarbon part of the molecule, the lower the solubility of the alcohol in water.			
10b(i)	Acid chlorides	Acid chlorides have the structure:			
10b(ii)	Faster reaction or higher yield	Equilibrium of esterification reaction using acid chlorides lies much further to the right/products side than using carboxylic acids.			
11a (i)	Iron (III) Bromide or Aluminium Bromide	AlBr3, AlCl3, FeBr3 and FeCl3 are all catalysts for this reaction.			
11a (ii)	nitrobenzene	HNO_3 / H_2SO_4 will react with benzene to substitute a nitro group onto the benzene ring. More than one nitro group can be substituted onto benzene ring.			
11a (iii)	Sulphonation	Adding -SO3H groups to benzene using SO3/conc. H_2SO_4 is called Sulphonation			
11b	Delocalised electrons in ring are not able to transfer molecules	In graphite, each carbon atom has an electron not taking part in bonding which can transfer from atom to atom during electrical conduction. The delocalised electrons in benzene are not localised to any particular atom in benzene but are attached to particular molecules and cannot jump to neighbouring molecules.			
12a	CH₃CH(CN)CH₃	Substitution reaction: -C=N group replaces the -Cl group. H - H - H H - C - C - C - H H - C - C - H H - C - H			
12b	2-methylpropanoic acid	H H H $H - C - C - C - H$ $H - C - C - H$			
12c (i)	2-methylpropan-1-ol	Needs to be primary alcohol to oxidised to a carboxylic acid \rightarrow 2-methylpropan-1-ol To form 2-methylpropanoic acid, alcohol needs to 2-methylpropan(anol) carbon shape			
12c(ii)	Any Answer from:	acidified (potassium) acidified (potassium) (hot) dichromate solution permanganate solution copper (II) oxide			
12d(i)	S - substitution N - nucleophilic 2 - 2 particles in RDS	Nucleophilic substitution reaction where 2 colliding particles are involved in the slowest step (rate determining step)			
12d(ii)	CH ₃ NC····C····Cl H CH ₃	CN ⁻ ion attacks ion from opposite side on molecule from -Cl group. The bond to CN group starts to form and the bond to the Cl starts to break. The whole intermediate molecule has a 1- charge			
13a	Graph showing:	Peak at 2.1-2.8 (this peak is 3x higher that other peak due 3H atoms in CH3- group) Peak at 9.6-10.1 (this peak is much smaller than other peak as 1H in -CHO group)			
13b	TMS	Tetramethylsilane (TMS) is the standard reference chemical used to calibrate the NMR and is always given a chemical shift of zero.			